Analytical Jacobi rotations for AP1roG
We have an analytical expression for the AP1roG-energy:
Let us first state that our Jacobi rotations are only defined for
, which are occupied-occupied rotations. In this case, the rotated energy isq≤NP∧p≤NP in whichE1(θ)=A1+B1cos(2θ)+C1sin(2θ), andA1=−12K∑b=NP+1(gbpbp−gbqbq)(Gbp−Gbq),B1=12K∑b=NP+1(gbpbp−gbqbq)(Gbp−Gbq)=−A1, C1=K∑b=NP+1gbpbq(Gbq−Gbp).
The minimum of
, being occupied-virtual rotations. In this case, the rotated energy is a little more complicated, beingp>NP∧q≤NP in whichE2(θ)=A2+B2cos(2θ)+C2sin(2θ)+D2cos(4θ)+E2sin(4θ), andA2=hpp−hqq+38(gpppp+gqqqq)(1−Gpq)−14gppqq(7+Gpq)+12gpqpq(3+Gpq)+NP∑j(2(gjjpp−gjjqq)−12(gjpjp−gjqjq)(2+Gpj))+12K∑b=NP(gbpbp−gbqbq)Gbq,B2=hqq−hpp+2gppqq+12(gpppp+gqqqq)(Gpq−1)−gpqpq(1+Gpq)+NP∑j(2(gjjqq−gjjpp)+12(gjpjp−gjqjq)(2+Gpj))+12K∑b=NP(gbqbq−gbpbp)Gbq,C2=2hpq+(gpppq−gpqqq)(1−Gpq)+NP∑j(4gjjpq−gjpjq(2+Gpj))+K∑b=NPgbpbqGbq,D2=18(gpppp+gqqqq−2(gppqq+2gpqpq))(1−Gpq), E2=12(gpppq−gpqqq)(Gpq−1).
In principle, we could write down the minimum of
Since the expression of the energy after a Jacobi rotation
, of course taking into account equationp>NP∧q>NP , these are virtual-virtual rotations. In this case, the rotated energy is again simple:(???) whereE3(θ)=A3+B3cos(2θ)+C3sin(2θ), andA3=−12NP∑j(gjpjp−gjqjq)(Gpj−Gqj),B3=12NP∑j(gjpjp−gjqjq)(Gpj−Gqj)=−A3, C3=NP∑jgjpjq(Gqj−Gpj).
The minimum of