Relating nuclear shieldings with induced current densities

Filling in equation \(\eqref{eq:B_ind_shielding}\) in equation \(\eqref{eq:B_ind_Biot-Savart}\), applying the partial derivative with respect to one component of the external magnetic field \(\require{physics} \vb{B}_{\text{ext}}\), evaluating at the field-free case \(\vb{B}_{\text{ext}, \thinspace 0}\) and writing the vector cross product using the Levi-Civita symbol (and its implied summation), we find Acke et al. (2018): \[\begin{equation} \sigma^{(0)}_{im}(\vb{R}_K) % = - \frac{\mu_0}{4 \pi} \int \dd{\vb{r}} % \thinspace % \frac{ % \epsilon_{ijk} \thinspace \mathcal{J}_{jm}(\vb{r}) % \thinspace % \qty[ \vb{R}_K - \vb{r} ]_k % }{ % \norm{ \vb{R}_K - \vb{r} }^3 } % \thinspace , \end{equation}\] but (Acke et al. 2018) seems to be missing a minus sign due to the change from \((\vb{R}_K - \vb{r})\) to \((\vb{r} - \vb{R}_K)\).

The NICS-value (nucleus-independent chemical shift) is the scaled negative trace of the (permanent) shielding tensor: \[\begin{equation} \text{NICS}(\vb{R}_K) % = - \frac{1}{3} \qty[ % \sigma^{(0)}_{xx}(\vb{R}_K) % + \sigma^{(0)}_{yy}(\vb{R}_K) % + \sigma^{(0)}_{zz}(\vb{R}_K) % ] % \thinspace . \end{equation}\]

The related `density’ (i.e. what is integrated over) to the nuclear shielding (tensor field) is called the (Jameson-Buckingham) nuclear shielding (tensor field) density Acke et al. (2018): \[\begin{equation} \Sigma_{im}(\vb{r}, \vb{R}_K) % = - \frac{\mu_0}{4 \pi} \thinspace % \frac{ % \epsilon_{ijk} \thinspace \mathcal{J}_{jm}(\vb{r}) % \qty[ \vb{R}_K - \vb{r} ]_k % }{ % \norm{ \vb{R}_K - \vb{r} }^3 } % \thinspace . \end{equation}\] The corresponding density to the NICS is then called the NICS-density, or NICSD: \[\begin{equation} \text{NICSD}(\vb{r}, \vb{R}_K) % = - \frac{1}{3} \qty[ % \Sigma_{xx}(\vb{r}, \vb{R}_K) % + \Sigma_{yy}(\vb{r}, \vb{R}_K) % + \Sigma_{zz}(\vb{r}, \vb{R}_K) % ] % \thinspace , \end{equation}\] whose \(zz\)-component can be calculated as: \[\begin{equation} \text{NICSD}_{zz}(\vb{r}, \vb{R}_K) % = \frac{\mu_0}{12 \pi} % \thinspace % \frac{ % \mathcal{J}_{xz} ( % \vb{r}; % \vb{B}_{\text{ext}} % ) % \thinspace % \qty[ \vb{R}_K - \vb{r} ]_y % % - \mathcal{J}_{yz} ( % \vb{r}; % \vb{B}_{\text{ext}} % ) % \thinspace % \qty[ \vb{R}_K - \vb{r} ]_x % }{ % \norm{ \vb{R}_K - \vb{r} }^3 } % \thinspace . \end{equation}\]

References

Acke, Guillaume, Sofie Van Damme, Remco W. A. Havenith, and Patrick Bultinck. 2018. Interpreting the behavior of the NICSzz by resolving in orbitals, sign, and positions.” Journal of Computational Chemistry 39 (9): 511–19. https://doi.org/10.1002/jcc.25095.