One-electron probability densities and probability current densities

In order to derive the one-electron Pauli probability current density, we start by introducing the time-dependent Pauli equation in a slightly different form: \[\begin{equation} \require{physics} \pdv{t} \Psi(\vb{r}, t) = -i \thinspace \mathcal{H}^c(\phi, \vb{A}) \Psi(\vb{r}, t) \thinspace , \end{equation}\] where \(\mathcal{H}^c(\phi, \vb{A})\) is the one-electron Pauli Hamiltonian in the presence of the scalar and vector potentials \(\phi(\vb{r})\) and \(\vb{A}(\vb{r})\): \[\begin{equation} \mathcal{H}^c(\phi, \vb{A}) = \qty[ k^c(\vb{A}) - \phi(\vb{r}) ] \vb{I}_2 + \frac{1}{2} \boldsymbol{\sigma} \vdot \vb{B}(\vb{r}) \thinspace , \end{equation}\] in which \(k^c(\vb{A})\) is the scalar kinetic operator. The Pauli probability density \(\rho(\vb{r}, t)\) for one electron is: \[\begin{equation} \rho(\vb{r}, t) = \Psi^\dagger(\vb{r}, t) \Psi(\vb{r}, t) \thinspace , \end{equation}\] so in order to derive the associated probability current density \(\vb{j}(\vb{r}, t)\) which adheres to the probability continuity equation \[\begin{equation} \pdv{\rho(\vb{r}, t)}{t} + \boldsymbol{\nabla} \vdot{\vb{j}(\vb{r}, t)} = 0 \thinspace , \end{equation}\] we have to partially differentiate the Pauli distribution with respect to time.

In order to do so, we also require the Hermitian adjoint of the Pauli equation: \[\begin{equation} \pdv{t} \Psi^\dagger(\vb{r}, t) = i \thinspace \qty[ \mathcal{H}^c(\phi, \vb{A}) \Psi(\vb{r}, t) ]^\dagger \thinspace , \end{equation}\] where we will require the complex conjugate of the scalar kinetic operator: \[\begin{equation} k^{c, *}(\vb{A}) = T^c + i \vb{A}(\vb{r}) \vdot \grad + \frac{1}{2} \norm{ \vb{A}(\vb{r}) }^2 \thinspace . \end{equation}\] Working out the partial derivative and expanding the spinors in their two-component form, we can see that many of the terms cancel. As an intermediary result, we find: \[\begin{equation} \begin{split} \pdv{\rho(\vb{r}, t)}{t} = \sum_\sigma \bigg( &i \thinspace \qty[ T^c \Psi^*_\sigma(\vb{r}, t) ] \thinspace \Psi_\sigma(\vb{r}, t) -i \thinspace \Psi^*_\sigma(\vb{r}, t) \thinspace \qty[ T^c \Psi_\sigma(\vb{r}, t) ] \\ & - \vb{A}(\vb{r}, t) \vdot \qty[ \qty( \grad{ \Psi^*_\sigma(\vb{r}, t) } ) \thinspace \Psi_\sigma(\vb{r}, t) ] - \Psi^*_\sigma(\vb{r}, t) \thinspace \vb{A}(\vb{r}, t) \vdot \qty[ \grad{ \Psi_\sigma(\vb{r}, t) }] \bigg) \thinspace . \end{split} \end{equation}\] Trying to bring this expression into the following form of the continuity equation \[\begin{equation} \pdv{\rho(\vb{r}, t)}{t} = - \boldsymbol{\nabla} \vdot{\vb{j}(\vb{r}, t)} \thinspace , \end{equation}\] we should make sure a \(- \grad \vdot\) expression appears. Using the vector calculus property \[\begin{equation} \boldsymbol{\nabla} \vdot( \vb{A} f ) = \qty(\grad{f}) \vdot \vb{A} + f \thinspace \qty(\boldsymbol{\nabla} \vdot{\vb{A}}) \thinspace , \end{equation}\] and realizing that we are always working in Coulomb gauge, we find for the partial derivative of the Pauli probability density: \[\begin{equation} \begin{split} \pdv{\rho(\vb{r}, t)}{t} = - \grad \vdot \Bigg( \sum_\sigma \bigg[ & \frac{i}{2} \bigg( \Psi_\sigma(\vb{r}, t) \thinspace \qty[ \grad{ \Psi^*_\sigma(\vb{r}, t) } ] - \Psi^*_\sigma(\vb{r}, t) \thinspace \qty[ \grad{ \Psi_\sigma(\vb{r}, t) } ] \bigg) \\ &+ \Psi^*_\sigma(\vb{r}, t) \Psi_\sigma(\vb{r}, t) \thinspace \vb{A}(\vb{r}, t) \bigg] \bigg) \thinspace . \end{split} \end{equation}\] We see that we must then define the Pauli probability current density as follows: \[\begin{equation} \begin{split} \vb{j}(\vb{r}, t) = - \frac{i}{2} \sum_\sigma \bigg[ & \Psi^*_\sigma(\vb{r}, t) \thinspace \qty[ \grad{ \Psi_\sigma(\vb{r}, t) } ] - \qty[ \grad{ \Psi^*_\sigma(\vb{r}, t) } ] \thinspace \Psi_\sigma(\vb{r}, t) \\ &+ 2i \thinspace \Psi^*_\sigma(\vb{r}, t) \Psi_\sigma(\vb{r}, t) \thinspace \vb{A}(\vb{r}, t) \bigg] \thinspace . \end{split} \end{equation}\] Alternatively, we may write the Pauli probability current density as: \[\begin{equation} \vb{j}(\vb{r}, t) = -\frac{i}{2} \Bigg( \Psi^\dagger(\vb{r}, t) \thinspace \qty[ \grad{\Psi(\vb{r}, t)} ] - [ \grad{\Psi^\dagger(\vb{r}, t)} ] \thinspace \Psi(\vb{r}, t) % no qty + 2i \thinspace \Psi^\dagger(\vb{r}, t) \Psi(\vb{r}, t) \thinspace \vb{A}(\vb{r}, t) \Bigg) \thinspace , \end{equation}\] in two-component form, where the gradient of a 2-component spinor should be regarded as the \(2\)-vector of the gradient of the (scalar) components. Expressions for the Schrödinger current density are analogous. (Lazzeretti 2000)

References

Lazzeretti, P. 2000. Ring currents.” Progress in Nuclear Magnetic Resonance Spectroscopy 36 (1): 1–88. https://doi.org/10.1016/S0079-6565(99)00021-7.