Second-order properties
In order to calculate second-order properties, we calculate the second total derivative of the energy with respect to the corresponding perturbation:
\[\begin{equation}
    \begin{split}
        \frac{ %
            \dd^2{E(\boldsymbol{\eta})} %
        }{\dd{\eta_m} \dd{\eta_n}} = %
        & %
        \pdv{ %
                \mathscr{L}(\boldsymbol{\eta}, \vb{p}^\star, \boldsymbol{\lambda}^\star) %
            }{\eta_m}{\eta_n} \\
        & + \sum_i^m %
            \eval{ %
                \pdv{ %
                    \mathscr{L}(\boldsymbol{\eta}, \vb{p}, \boldsymbol{\lambda}^\star) %
                }{p_i}{\eta_n} %
            }_{\vb{p}^\star} %
            \qty( %
                \pdv{ %
                    p_i^\star(\boldsymbol{\eta}) %
                }{\eta_m} %
            ) \\ %
        &+ %
        \sum_a^l %
            \eval{ %
                \pdv{ %
                    \mathscr{L}(\boldsymbol{\eta}, \vb{p}^\star, \boldsymbol{\lambda}) %
                }{\lambda_a}{\eta_n} %
            }_{\boldsymbol{\lambda}^\star} %
            \qty( %
                \pdv{ %
                    \lambda_a^\star(\boldsymbol{\eta}) %
                }{\eta_m} %
            ) \thinspace ,
    \end{split}
    \label{eq:molecular_Hessians}
\end{equation}\]
from which we see that we require the first-order response of the wave function parameters
\[\begin{equation}
    \vb{x} = %
    \pdv{ %
        \vb{p}^\star(\boldsymbol{\eta}) %
    }{\boldsymbol{\eta}}
\end{equation}\]
and of the Lagrangian multipliers:
\[\begin{equation}
    \vb{y} = %
    \pdv{ %
        \boldsymbol{\lambda}^\star(\boldsymbol{\eta}) %
    }{\boldsymbol{\eta}} %
    \thinspace ,
\end{equation}\]
where we have introduced the short-hand symbols 
\(\vb{x}\) and 
\(\vb{y}\). In order to determine the linear wave function response 
\(\vb{x}\), we take the total derivative of equation 
\(\eqref{eq:Lagrangian_var_lambda}\), yielding:
\[\begin{equation}
    \vb{k}_{\vb{p}} \thinspace \vb{x} %
    = - \vb{F}_{\vb{p}} %
    \thinspace ,
\end{equation}\]
in which we will call 
\(\vb{k}_{\vb{p}}\) the parameter response constant:
\[\begin{equation}
    \qty( %
        \vb{k}_{\vb{p}}
    )_{ai} %
    = %
    \eval{ %
        \pdv{ %
            \mathscr{L}(\boldsymbol{\eta}, \vb{p}, \boldsymbol{\lambda}) %
        }{\lambda_a}{p_i} %
    }_{\vb{p}^\star, \boldsymbol{\lambda}^\star} %
    = \eval{ %
        \pdv{ %
            f_a(\boldsymbol{\eta}, \vb{p}) %
        }{p_i} %
    }_{\vb{p}^\star}
\end{equation}\]
and 
\(\vb{F}_{\vb{p}}\) the parameter response force:
\[\begin{equation}
    \qty( %
        \vb{F}_{\vb{p}}
    )_{am} %
    = %
    \eval{ %
        \pdv{ %
            \mathscr{L}(\boldsymbol{\eta}, \vb{p}^\star, \boldsymbol{\lambda}) %
        }{\lambda_a}{\eta_m} %
    }_{\boldsymbol{\lambda}^\star} %
    = %
    \pdv{ %
        f_a(\boldsymbol{\eta}, \vb{p}^\star) %
    }{\eta_m} %
    \thinspace ,
\end{equation}\]
in analogy with Hooke’s law. We note that the parameter response constant 
\(\vb{k}_{\vb{p}}\) is related to the Jacobian of the PSEs. After having solved the linear equation for the first-order wave function response 
\(\vb{x}\), we are able to solve a linear equation for the first-order Lagrange multiplier response 
\(\vb{y}\):
\[\begin{align}
    \vb{k}_{\boldsymbol{\lambda}} \thinspace \vb{y} %
    &= - \vb{F}_{\boldsymbol{\lambda}} \\
    %
    &= - \vb{A}_{\boldsymbol{\lambda}} %
    - \vb{B}_{\boldsymbol{\lambda}} \vb{x} %
    \thinspace ,
\end{align}\]
where 
\(\vb{k}_{\boldsymbol{\lambda}}\) is then accordingly called the multiplier response constant:
\[\begin{equation}
    \qty( %
        \vb{k}_{\boldsymbol{\lambda}}
    )_{ia} %
    =
    \qty( %
        \vb{k}_{\vb{p}}
    )_{ai}
\end{equation}\]
and 
\(\vb{F}_{\boldsymbol{\lambda}}\) the multiplier response force:
\[\begin{equation}
    \qty( %
        \vb{F}_{\vb{p}}
    )_{am} %
    = %
    \eval{ %
        \pdv{ %
            \mathscr{L}(\boldsymbol{\eta}, \vb{p}^\star, \boldsymbol{\lambda}) %
        }{\lambda_a}{\eta_m} %
    }_{\boldsymbol{\lambda}^\star} %
    = %
    \pdv{ %
        f_a(\boldsymbol{\eta}, \vb{p}^\star) %
    }{\eta_m}
\end{equation}\]
that can be calculated using the intermediaries
\[\begin{align}
    \qty( %
        \vb{A}_{\boldsymbol{\lambda}}
    )_{im} %
    & = %
    \eval{ %
        \pdv{ %
            \mathscr{L}(\boldsymbol{\eta}, \vb{p}, \boldsymbol{\lambda}^\star) %
        }{p_i}{\eta_m} %
    }_{\vb{p}^\star} \\
    & = %
    \eval{ %
        \pdv{ %
            E(\boldsymbol{\eta}, \vb{p}) %
        }{p_i}{\eta_m} %
    }_{\vb{p}^\star} %
    + \sum_a^l \lambda_a^\star %
        \eval{ %
            \pdv{ %
                f_a(\boldsymbol{\eta}, \vb{p}) %
            }{p_i}{\eta_m} %
        }_{\vb{p}^\star}
\end{align}\]
and
\[\begin{align}
    \qty( %
        \vb{B}_{\boldsymbol{\lambda}}
    )_{ij} %
    &= %
    \eval{ %
        \pdv{ %
            \mathscr{L}(\boldsymbol{\eta}, \vb{p}, \boldsymbol{\lambda}) %
        }{p_i}{p_j} %
    }_{\vb{p}^\star, \boldsymbol{\lambda}^\star} \\
    &= %
    \eval{ %
        \pdv{ %
            E(\boldsymbol{\eta}, \vb{p}) %
        }{p_i}{p_j} %
    }_{\vb{p}^\star} %
    + \sum_a^l \lambda_a^\star %
        \eval{ %
            \pdv{ %
                f_a(\boldsymbol{\eta}, \vb{p}) %
            }{p_i}{p_j} %
        }_{\vb{p}^\star} %
    \thinspace .
\end{align}\]
After having solved these two sets of linear response equations, we can calculate second-order properties as:
\[\begin{equation}
    \begin{split}
        \frac{ %
            \dd^2{E(\boldsymbol{\eta})} %
        }{\dd{\eta_m} \dd{\eta_n}} %
        = %
        & \pdv{ %
                \mathscr{L}(\boldsymbol{\eta}, \vb{p}^\star, \boldsymbol{\lambda}^\star) %
            }{\eta_m}{\eta_n} %
        + \qty( %
            \vb{x}^{\text{T}} \vb{A}_{\boldsymbol{\lambda}} %
        )_{mn} \\
        & + \qty( %
            \vb{y}^{\text{T}} \vb{F}_{\vb{p}} %
        )_{mn} %
        \thinspace .
    \end{split}
\end{equation}\]
For the PSE framework, we list here the following energy derivatives:
\[\begin{equation}
    \eval{ %
            \pdv{ %
                E(\boldsymbol{\eta}, \vb{p}) %
            }{\eta_m}{\eta_n} %
        }_{\vb{p}^\star} %
        = %
        \frac{ %
            \matrixel**{0}{ %
                \pdv[2]{ %
                    \hat{\mathcal{H}}(\boldsymbol{\eta}) %
                }{\eta_m}{\eta_n} %
            }{\Psi(\vb{p}^\star)} %
        }{ \braket{0}{\Psi(\vb{p}^\star)} }
        %
\end{equation}\]